Proteoglycan-collagen arrangements in developing rat tail tendon. An electron microscopical and biochemical investigation.
نویسندگان
چکیده
1. Developing tail tendons from rats (19-day foetal to 126 days post partum) were examined by electron microscopy after staining for proteoglycan with a cationic copper phthalocyanin dye. Cuprolinic Blue, in a "critical electrolyte concentration" method. Hydroxyproline was measured on papain digests of tendons, from which glycosaminoglycuronans were isolated, characterized and quantified. 2. Mean collagen fibril diameters increased more than 10-fold with age according to a sigmoid curve, the rapid growth phase 2 being during 30-90 days after conception. Fibril periodicities were considerably smaller (50-55 nm) in phases 1 and 2 than in phase 3 (greater than 62 nm). 3. Dermatan sulphate is the main glycosaminoglycuronan in mature tendon. Chondroitin sulphate and hyaluronate preponderate in foetal tissue. 4. Proteoglycan was seen around but not inside collagen fibrils. Proteoglycan and collagen were quantified from electron micrographs. Their ratios behaved similarly to uronic acid/hydroxyproline and hyaluronate/hydroxyproline ratios, which decreased rapidly around birth, and then levelled off to a low plateau coincident with the onset of rapid growth in collagen fibril diameter. 5. Dermatan sulphate/hydroxyproline ratios suggest that the proteoglycan orthogonal array around the fibril is largely dermatan sulphate. In the foetus hyaluronate and chondroitin sulphate exceed that expected to be bound to collagen. 6. An inhibiting action of chondroitin sulphate-rich proteoglycan on fibril diameter growth is suggested. 7. The distributions of hyaluronate, chondroitin sulphate and dermatan sulphate are discussed in the light of secondary structures suggested to be present in hyaluronate and chondroitin sulphate, but not in dermatan sulphate.
منابع مشابه
Dermatan sulphate-rich proteoglycan associates with rat tail-tendon collagen at the d band in the gap region.
Rat tail tendon was stained with a cationic phthalocyanin dye, Cupromeronic Blue, in a 'critical-electrolyte-concentration' method [Scott (1980) Biochem. J. 187, 887-891] specifically to demonstrate proteoglycan by electron microscopy. Hyaluronidase digestion in the presence of proteinase inhibitors corroborated the results. Collagen was stained with uranyl acetate and/or phosphotungstic acid t...
متن کاملCollagen--proteoglycan interactions. Localization of proteoglycans in tendon by electron microscopy.
Proteoglycan in foetal- and adult-rat tail tendon and adult-rabbit achilles tendon was stained for electron microscopy with a cationic phthalocyanin-like dye, based on cinchomeronic acid, in a 'critical electrolyte concentration' method [Scott (1973) Biochem. Soc. Trans. 1, 787-806). Provided that the tissue was fixed with glutaraldehyde or formaldehyde, regular orthogonal perifibrillar arrays ...
متن کاملInvestigations into the polymorphism of rat tail tendon fibrils using atomic force microscopy.
Collagen type I displays a typical banding periodicity of 67 nm when visualized by atomic force or transmission electron microscopy imaging. We have investigated collagen fibers extracted from rat tail tendons using atomic force microscopy, under different ionic and pH conditions. The majority of the fibers reproduce the typical wavy structure with 67 nm spacing and a height difference between ...
متن کاملOsteogenesis imperfecta: an x ray fibre diffraction study.
The use of x ray fibre diffraction to study the molecular architecture of healthy and diseased human tendon is described. The three dimensional structure of human (finger) tendon is derived to high resolution and is shown to be very similar to that reported for rat tail tendon. In particular the presence of the 38 A row line in the diffraction pattern suggests that a high degree of lateral orde...
متن کاملSacrificial bonds in polymer brushes from rat tail tendon functioning as nanoscale velcro.
Polymers play an important role in many biological systems, so a fundamental understanding of their cross-links is crucial not only for the development of medicines but also for the development of biomimetic materials. The biomechanical movements of all mammals are aided by tendon fibrils. The self-organization and biomechanical functions of tendon fibrils are determined by the properties of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 195 3 شماره
صفحات -
تاریخ انتشار 1981